Not Too Cool for School: Demystifying Costs and Accelerating Pathways for All-Electric Schools

A4LE: October 18, 2024 **nbi** new buildings institute

Today's Presenters

Associate Director New Buildings Institute

Andrea Swiatocha

Renew America's Schools US Department of Energy

Mischa Egolf

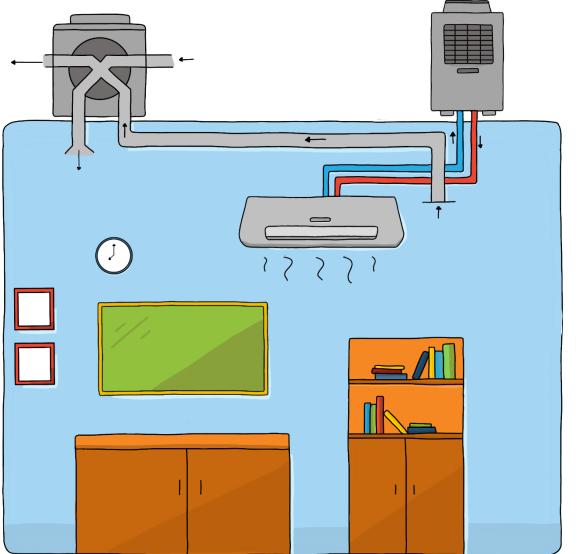
Technical Associate New Buildings Institute


Aaron Presberg Sustainability Manager Portland Public Schools New Buildings Institute (NBI)

Mission: We push for **better buildings** that achieve **zero energy, zero carbon, and beyond** through research, policy, guidance, and market transformation—to protect people and the planet.

Introduction

School district portfolios, priorities and stakeholders are complicated


- With historic injustices,
- Operations, construction and maintenance of buildings significantly underfunded,
- Political opposition,
- Wildfires and extreme weather,
- and so much more...

Our school infrastructure is struggling. The average age of our public school infrastructure is 49 years old.

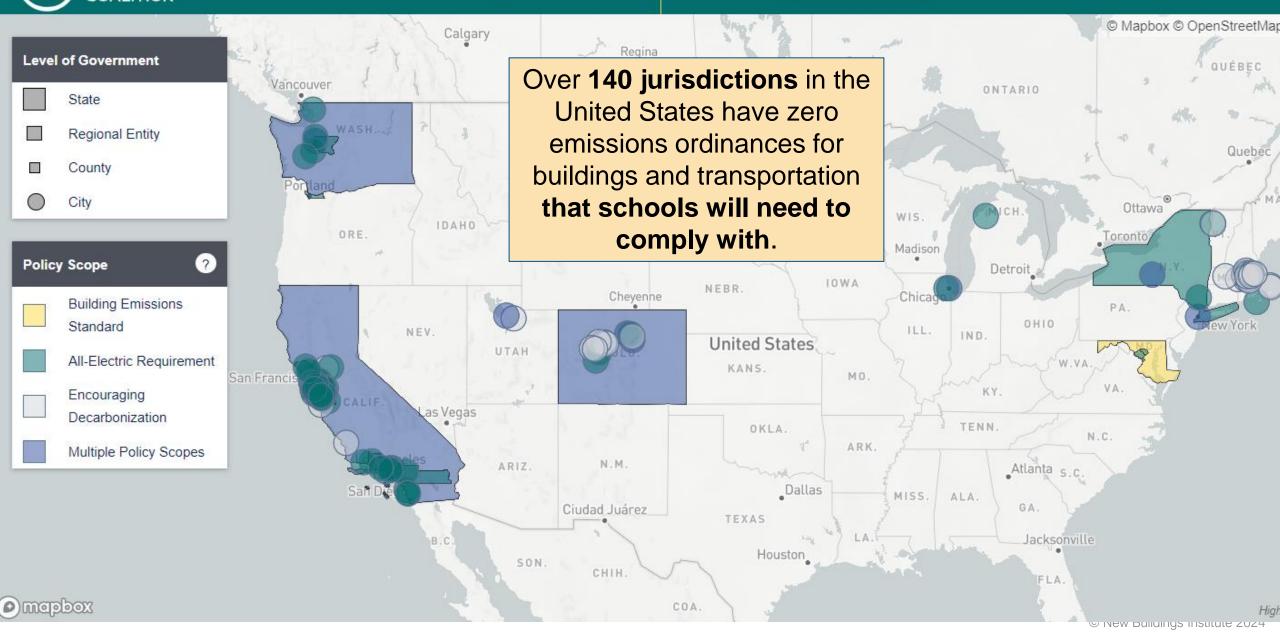
ASCE's 2021 Report Card for America's Infrastructure assessed schools with ^a D+ grade and estimated that the investment needed between 2021 and 2029 to modernize and maintain the nation's schools is at least **\$370** billion.

Critical systems are failing

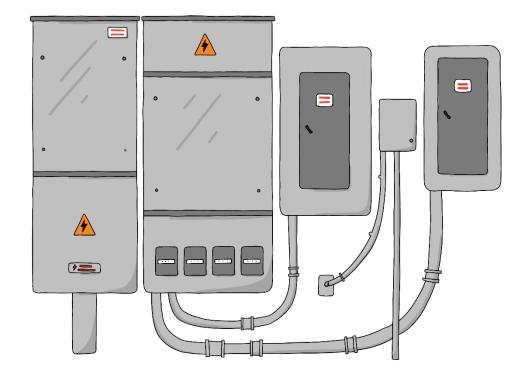
The U.S. Government Accountability Office reported that approximately one third of schools need to update or replace heating, ventilation, and air conditioning (HVAC) equipment.

Artwork by Nicole Kelner

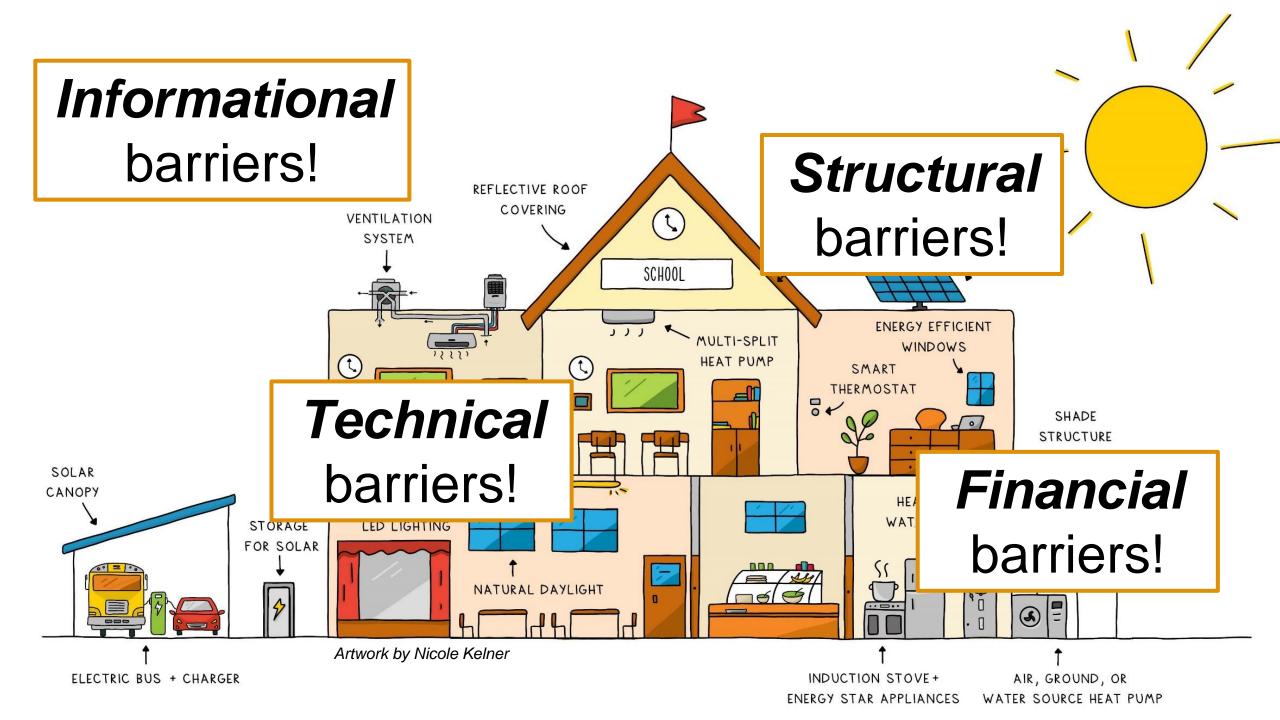
What does this look like in terms of emissions?


America's K-12 schools emit an estimated **42 million metric tons** of operational emissions annually

Sources: Why K-12 Schools Should Feature in America's National Climate Strategy


BUILDING DECARBONIZATION COALITION

N Zero Emission Building Ordinances



Electrification – a VERY important strategy

- To address *failing systems*, *climate adaptation*, and *rising costs*.
- However! Electrification is not always guaranteed to be beneficial or cost less.
- The approach matters and is influenced by many factors:
 - timing,
 - improvements to adjacent systems,
 - and/or occupant/facilities manager buy-in
 - and other barriers

Artwork by Nicole Kelner

Planning for Lifecycle Events

Overall approach

Getting to zero over

time is a concept that ensures the correct tools are in place to address a building lifecycle event in a way that aligns with the school district's long-term energy, electrification, and carbon reduction goals.

Decarbonization Roadmap Guide

For School Building Decision Makers

nbi new buildings

© New Buildings Institute 2024

SETTING TO ZETO

Have Base Makes School An article School Base of Hood Row, OR Detroit M

Electrification scenarios

Event in Building Lifecycle	Goals
Emergency Replacement	Minimal upfront costs, non-invasive installation, readily available equipment
Planned/Routine Capital Improvement & Deferred Maintenance	Minimal upfront costs, non-invasive installation, some lead time and planning for improved air quality
Efficiency & Cost Savings Project (Deep Efficiency Retrofit)	Lifecycle cost savings on utility bills and maintenance
Addition to Existing Building	Minimal upfront cost, lifecycle cost savings, improved air quality, fitting in with existing systems

Electrification scenarios

Event in Building Lifecycle	Goals Be proactive to avoid this one!				
Emergency Replacement	Minimal upfront costs, non-invasive installation, readily available equipment				
Planned/Routine Capital Improvement & Deferred Maintenance	Minimal upfront costs, non-invasive installation, some lead time and planning for improved air quality				
Efficiency & Cost Savings Project (Deep Efficiency Retrofit)	Lifecycle cost savings on utility bills and maintenance				
Addition to Existing Building	Minimal upfront cost, lifecycle cost savings, improved air quality, fitting in with existing systems				

Electrification Technology and Cost in Schools

BETR Report and Interactive Tool

nbi new buildings

The Building Electrification Technology Roadmap (BETR) for Schools

A BETR Path to All-Electric Schools

Prepared By Alexi Miller, Reilly Loveland, Mischa Ego Amy Cortese, and Shannon Oliver New Buildings Institute Rhys Davis, Anna LaRue, Carrie Brown, and Nate Heckman Resource Refocus

November 2023

With Sponsorship From

Intro Cost Estimator Overall Summary Upfront Costs per ft² Upfront Total Costs

Upfront Cost Estimation Tool

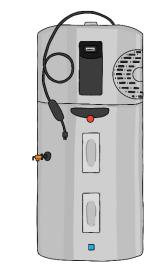
Input your school building size and select the prompts from the dropdown menus below to calculate upfront cost estimates by equipment type and end use. See intro tab for more details on the inputs.

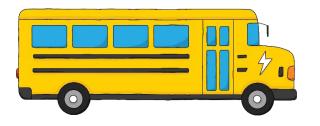
Input Your Building Size in ft²

Ze III II' Note: For most equipment, this tool uses average \$/sq ft values to estimate upfront project costs. If your square footage is greater than 25,000 square feet, select "Large" as your building type.

Select your project type	Select your building type	
Emergency Replacement •	Small	•

What type of equipment are you planning to upgrade?		Select the specific equipment to estimate	
(All)	•	(All)	•
(All)	•	(AII)	


Range of Total Upfront Electrified Equipment Investment Costs


End Use	Electric Equipment	Total Cost Estimate Low	Total Cost Estimate High
Cooking	Countertop Kitchen Equipment	\$500	\$5,800
Domestic Hot Water	120 Volt HPWH	\$2,100	\$3,400
	Tankless Water Heater	\$4,100	\$26,900
Laundry	Heat Pump Dryer	\$400	\$2,200
Space Conditioning	Multi-Zone Rooftop Heat Pump	\$121,500	\$272,200
	Single-Zone Rooftop Heat Pump	\$148,500	\$515,700
Grand Total		\$277,200	\$826,200

South Tahoe High School | South Lake Tahoe, CA Photo Credit: LPA Architects

Electric technologies for schools

- Space conditioning and ventilation (HVAC)
- Water heating
- Kitchens and cooking
- Laundry
- Transportation

What do we need to know about electrification options?

- In what **scenarios** are they feasible?
- In what **building types** are they appropriate?
- Upfront cost and installation challenges
- Energy and GHG impacts
- · Air quality impacts

BETR Report Electrification Matrix Example

UPFRONT

COST RANGE

(\$/SF)

		(\$/	5F)		SCEN	ARIO		1	TPE	5		ACI		BENG			
	TECHNOLOGY	Low	High	Emergency Replacement	Planned Capital Improvement	Deep Efficiency Retrofit	Addition to Existing Building	Small	Large	Relocatable	Lower or similar utility costs	Likely to increase utility costs	Ease of Maintenance	Ease of Install	IAQ improvement potential	GHG emission reduction	Low GWP Refrigerant Option
	Packaged Terminal Heat Pump	\$1.03	\$1.48	v						~	~		•		_	0	r
High	Single-Zone Ducted Package ASHP + MERV 13	\$9.90	\$34.38	v	~		~	~		~	v		0		0	-	
le.	Single-Zone Non- Ducted Minisplit ASHP w/ DOAS	\$11.90	\$17.47		~	~	~	~		~	~		-	-			r
	Multi-Zone Ducted ASHP + MERV 13	\$8.10	\$18.15	v	~		~	~	~		~		0		0	-	
	Multi-Zone Multi- split ASHP w/ DOAS	\$10.82	\$25.27			~		~	~		~		-	-			r
	Air-to-Water Hydronic Heat Pump	\$4.09	\$8.40		~	~	~		~			~	0	0	_	-	

SCENARIO

UTILITY

COST

IMPACT

BENEFITS

BUILDING

TYPES

Full circles are most desirable

nbi new buildings institute

Existing Gas Equipment: Electric Options

Existing Gas Equipment	Emergency Replacement Electrification Option	Replacement Electrification Option			
Wall mounted A/C & gas furnace	Yes	Yes			
Single zone A/C & gas RTU	Some	Yes			
Multizone A/C & gas RTU	No	Yes			
Central boiler	No	Some			
Instantaneous gas water heater	Some	Yes			
Unitary gas storage water heater	Some	Yes			
Central gas water heater	No	Yes			
Small countertop gas kitchen equipment	Yes	Yes			
Commercial gas kitchen equipment	No	Yes			
Small gas laundry equipment	Yes	Yes			
Commercial laundry equipment	Some	Yes			

Existing Gas Equipment: Electric Options

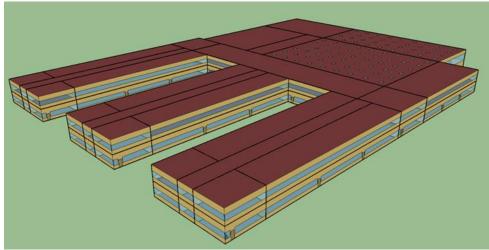
	Emergency		Electrification Option with:					
Existing Gas Equipment	Replacement Electrification Option	Replacement Electrification Option	Similar First Cost	Lower Utility Cost	IAQ Improvement			
Wall mounted A/C & gas furnace	Yes	Yes	Yes	Yes	Some*			
Single zone A/C & gas RTU	Some	Yes	No	Yes	Some*			
Multizone A/C & gas RTU	No	Yes	No	Yes	Some*			
Central boiler	No	Some	No	No	Some*			
Instantaneous gas water heater	Some	Yes	Some	Some				
Unitary gas storage water heater	Some	Yes	Some	Yes				
Central gas water heater	No	Yes	No	Some				
Small countertop gas kitchen equipment	Yes	Yes	Some	Yes	Yes			
Commercial gas kitchen equipment	No	Yes	Yes	Some	Yes			
Small gas laundry equipment	Yes	Yes	Some	Yes				
Commercial laundry equipment	Some	Yes	Some	Yes				

Installation Considerations

- Do panels need to be upsized?
- Can existing infrastructure be used?
 - Wiring
 - · Piping
 - · VAV boxes
 - · Ducts

nbi new buildings

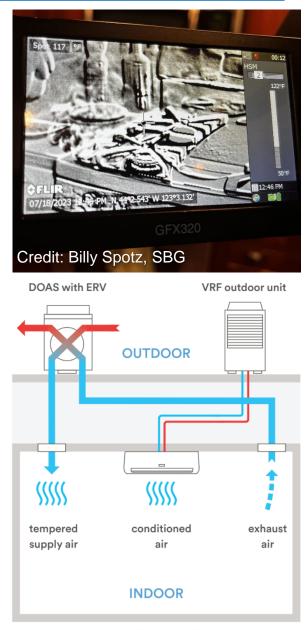
- Are there many components?
- · Is a regulatory review required?



Credit: Ray Wohlfarth, Plumbing & Mechanical

Operation Considerations

- Each project will require custom hourly energy modeling to determine specific energy cost and GHG impacts
- However, based on system efficiencies and typical designs, we can estimate impacts of technologies relative to the existing system



Credit: Department of Energy

Air Quality Considerations

- Existing school building systems often do not provide sufficient air quality needs
- Electrification retrofits can address air quality issues
 - Indoor gas combustion replaced by electric
 - Retrofitted ventilation systems combined with electric space conditioning

Credit: Building Energy Exchange

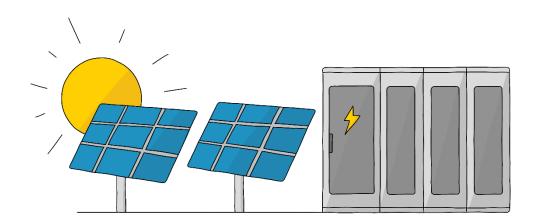
Electric technologies for schools: key takeaways

- Make a plan!
- HVAC replacements will have the **biggest impact**
- Always choose heat pumps!
 - Look for low-GWP refrigerant
- Select ENERGY STAR certified equipment
- Consider how retrofits can support air quality improvements
- Consider electrical panel and transformer upgrades

Stacking the Opportunities to Pay for Electrification

Funding Stacking

- Schools experience a minimum annual funding gap of \$38 billion for facility upgrades and repairs (ASCE 2021).
- Funding stacking, the process of utilizing multiple funding streams for a larger result, is necessary to fill these gaps.


Socastee Elementary School | Horry County, SC Credit: SfL+a Architects

Common Stacking Mechanisms

- Local bonds (or levies)
- State matching funds
- Utility incentives
- Low interest loans
- Grants
- Power Purchase Agreements (PPAs)
- Energy Savings Performance Contracts (ESPC's)
- ... *Creativity*

But this creative approach stacking together funding opportunities can exhaust district staff and resource channels.

Artwork by Nicole Kelner

Enter stage right... A generational funding event!

+ Energy CLASS Prize, Supporting America's School Infrastructure (SASI) and more!

The Bipartisan Infrastructure Law (BIL)

RENEW AMERICA'S SCHOOLS = Competitive grant program for energy improvements at public school facilities

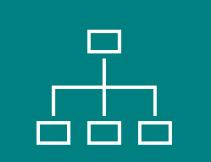
Funding

\$500M (\$100M over five years, FY22-FY26), until expended, through competitive grants.

Qualifying Energy Improvements

Improvements, repairs, or renovations that reduce energy costs or lead to improved teacher and student health and achieve energy savings.

Eligible Entities


Consortia of 1 local educational agency (LEA) and one or more schools, non-profits, for-profits, or community partners.

Prioritization

Schools with improvement funding needs, high free and reduced-price lunch percentage or rural locale, and leverage private sector funding through performance contracting.



The Bipartisan Infrastructure Law (BIL)

RENEW AMERICA'S SCHOOLS = Competitive grant program for energy improvements at public school facilities

In the 2022-23 Grants, 15 of 21 HVAC Projects are transitioning to electrification.

The Bipartisan Infrastructure Law (BIL)

EPA Clean School Bus Program = Competitive rebate and grant program

Funding

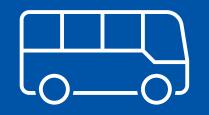
\$5 billion over five years (FY 2022-2026) to clean a substantial portion of the nation's fleet of nearly 500,000 school buses

Bus Replacement

These new cleaner school bus replacements will produce either zero or low emissions compared to their older diesel predecessors, resulting in cleaner air on the bus, in bus loading areas, and in the communities in which they operate.

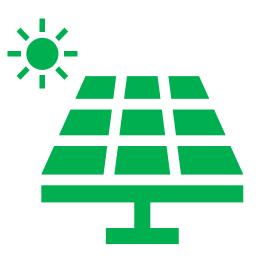
Impact

School buses travel over four billion miles each year, providing the safest transportation to and from school for more than 25 million children every day. What if Electric School Buses could be used to supply power when off Duty?



Benefits

·Cleaner air. Clean school buses eliminate or reduce school bus exhaust, which is linked to asthma. Reduced health risks. especially for children whose lungs are still developing. Reduced greenhouse gas emissions, which contribute to climate change. •Cost savings from reduced maintenance and fuel costs. Resiliency. can provide power to the grid or buildings during power shutdowns.



Inflation Reduction Act

The largest investment in climate and clean energy in United States history.

Direct Pay/Elective Pay: Tax-free cash payments

- Investment Tax Credit (ITCs): Applied to upfront costs of clean energy systems (solar, storage, geothermal, etc.)
- **Commercial Clean Vehicle Credit:** Applied to upfront costs of installing electric school buses.
 - Max credit \$40k
 - Non-competitive, uncapped, can be combined with grants for EV buses
- Alternative Fuel Refueling Property Credit: Applied upfront to costs of EV charging equipment for buses or passenger vehicles.
 - Max 30% of costs, or \$100,000 per unit
 - Non-competitive, uncapped, can be combined with grants for charging equipment

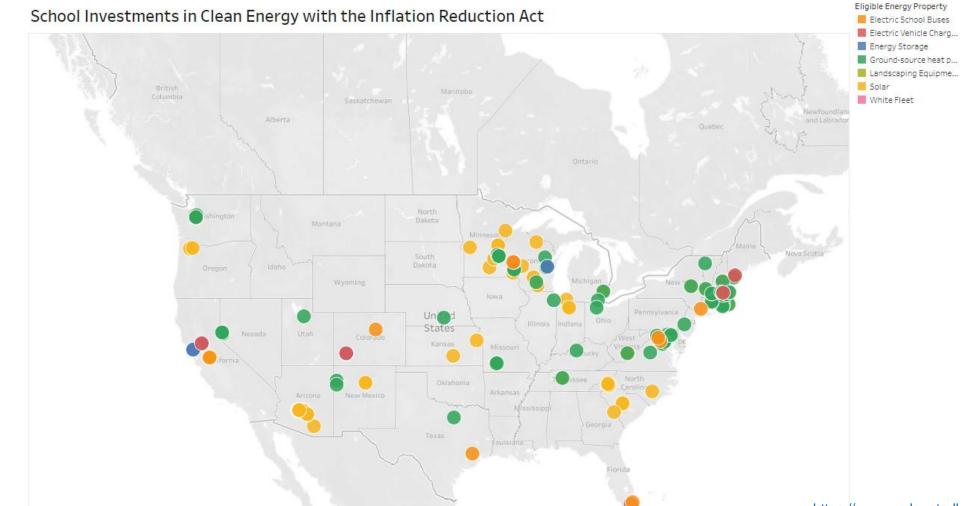
Direct Pay Technologies covered:

- Solar & Wind
- Ground Source Heat Pumps
- Energy Storage
- Electric Vehicle Chargers

Inflation Reduction Act

Direct Pay/Elective Pay – Cash for Clean Energy Examples

Elective pay allows **tax-exempt and governmental entities to receive a cash payment** from the IRS for eligible clean energy investments.


- Example: school district invests \$1,000,000 in tax-credit eligible solar, battery storage, and EV chargers at a school.
- Cash-back: Through elective pay, school district receives a \$300,000 cash payment from the IRS if it qualifies for relevant 30% investment tax credits.

Inflation Reduction Act

YUNDAUNTEDK12

Inflation Reduction Act Our Latest Where We Work In the News Solutions Center About

0

in

Example of Stacking

EPA Clean School Bus + DOE Renew America's Schools Grant + PPA + Local Bond/Operating Budget

Completion of this project will result in <u>Electric School Bus-2-Grid assisted resilient microgrids</u> on the campuses of fifteen Illinois public school districts

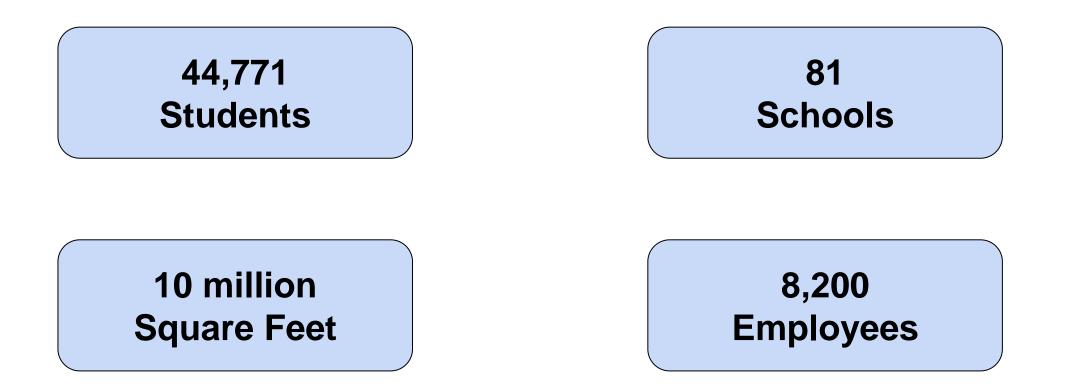
Each microgrid will integrate solar, stationary storage, mechanical switchgear, Vehicle-to-Grid (V2G) Electric Vehicle (EV) charging, and at least 1 electric school bus per district with energy discharge capabilities. Our project anticipates the following installed system capacities.

- 3 schools with 400 Kilowatt (KW) solar arrays coupled with 500-kWh (kilowatt hour) stationary battery storage
- 9 schools with 800 KW solar arrays coupled with 1,000-Kilowatt hour (kWh) stationary battery storage
- 3 schools with 1,000 KW solar arrays coupled with 1,000 kWh stationary battery storage

It is anticipated that at least 10 participating school districts will enter into a PPA.

Barriers still exist with this funding event

- Funding stacking has limitations, such as "double-dipping" restrictions and reduced funding if other sources are secured
- Short term funding may be needed to bridge first costs before rebates and incentives kick in
- State and federal funding have different project activity eligibility requirements/timelines
- Staff capacity limitations



District Decarbonization Roadmap

Aaron Presberg

District Overview

Climate Justice

The Policy states: *Climate change disproportionately impacts the vulnerable members of our community. Implementation of this policy will prioritize serving people with disabilities, communities of color, and other vulnerable populations.*

Advancing the Graduate Portrait

- Transformative Racial Equity Leaders
- Influential and Informed Global Stewards
- Optimistic and Future-Oriented Graduates

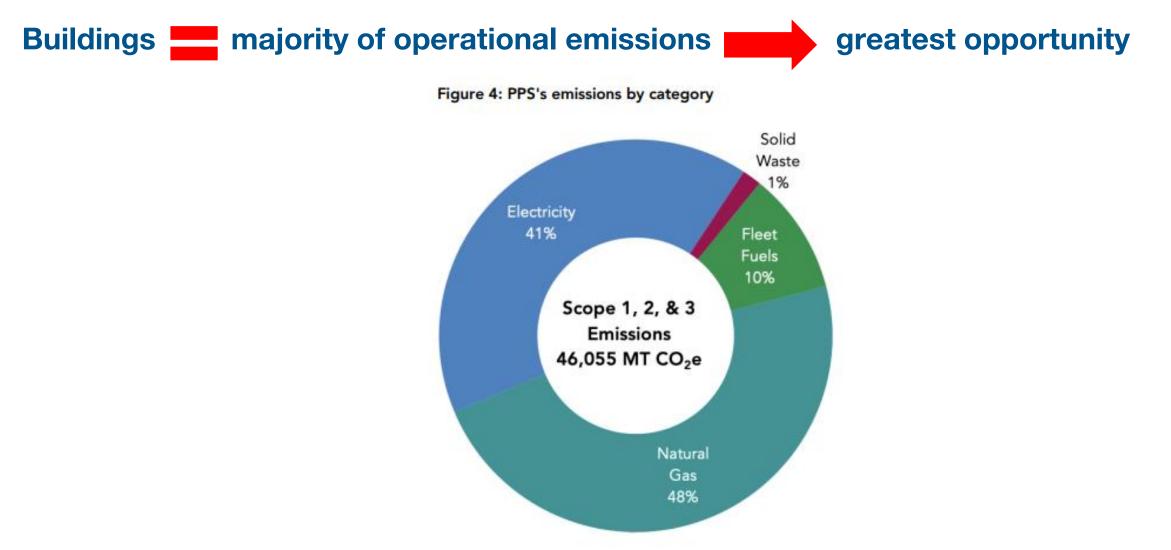
PPS Climate Crisis Response, Climate Justice, and Sustainable Practices Policy (CCRP)

Passed March 2022

PPS Commits to swiftly mobilize resources for climate action to:

- Reducing greenhouse gas (GHG) emissions and minimizing other negative environmental impacts;
- improving our school communities' health and wellness; and
- building a culture of learning, responsibility, and sustainability centered on our values of racial equity and climate justice.
- educate and empower students as leaders in the just transition to a sustainable city and restorative society.

Policy Commitment

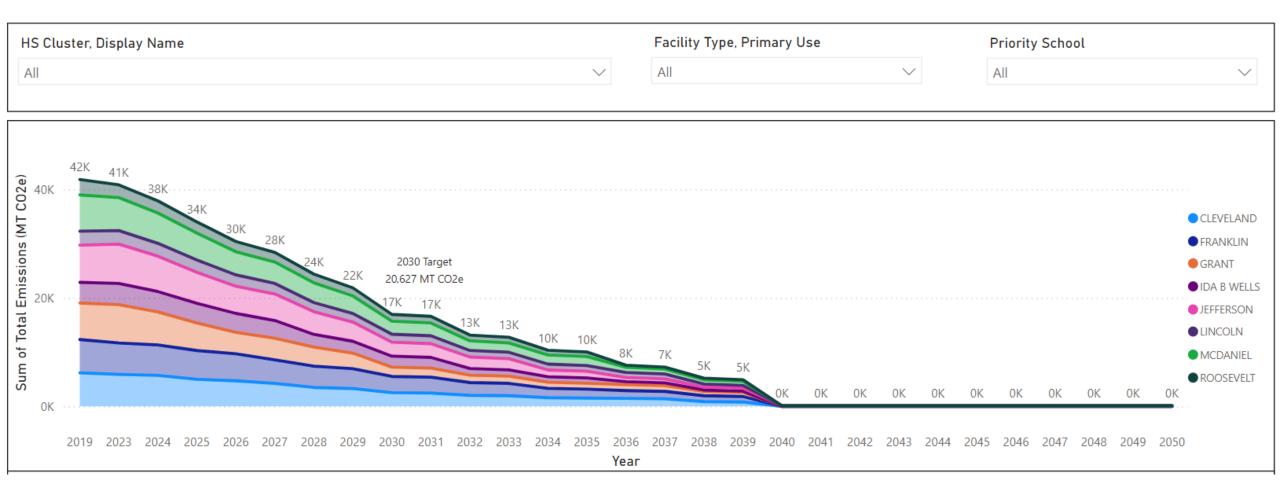

10 Goals, 75+ Objectives over Three Policy Pillars:

- **Pillar 1**: Reduce Environmental Costs and Impacts
- **Pillar 2:** Improve Health and Wellness
- **Pillar 3:** Provide Effective Environmental and Sustainability Education

Decarbonization Commitment

- 2030: 50% Reduction GHG of 2018-2019 baseline
- 2040: Reach Net Zero GHG Emissions
- 2050: Phase out all fossil fuel infrastructure and equipment in new construction and existing buildings

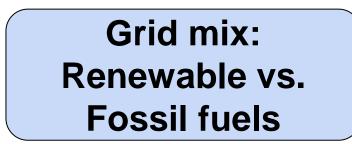
Greenhouse Gas Inventory



Decarb Roadmap

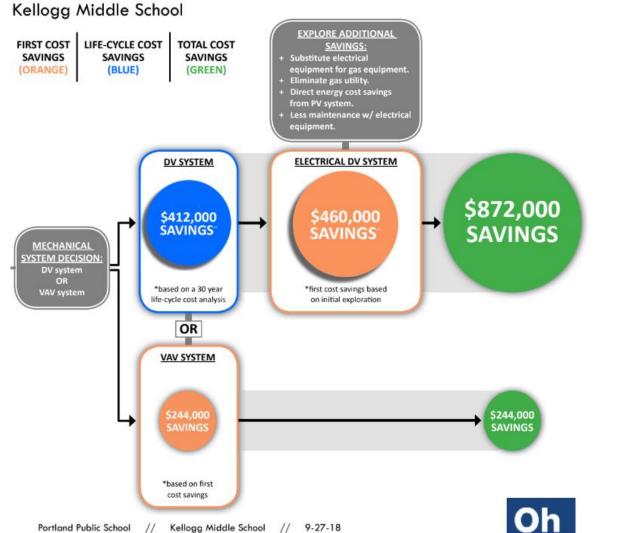
How do we meet our decarb goals?

- In what order should PPS implement GHG emissions reductions measures across schools and admin buildings in order to provide the best chance of meeting PPS emissions goals, given financial, industry, and facility constraints, while considering historic inequities in the distribution of resources across PPS?
- How do we incorporate this into 'already planned' projects?
- How much will it cost?
- What other factors do we need to consider?
- Equity, health, thermal comfort, facility condition

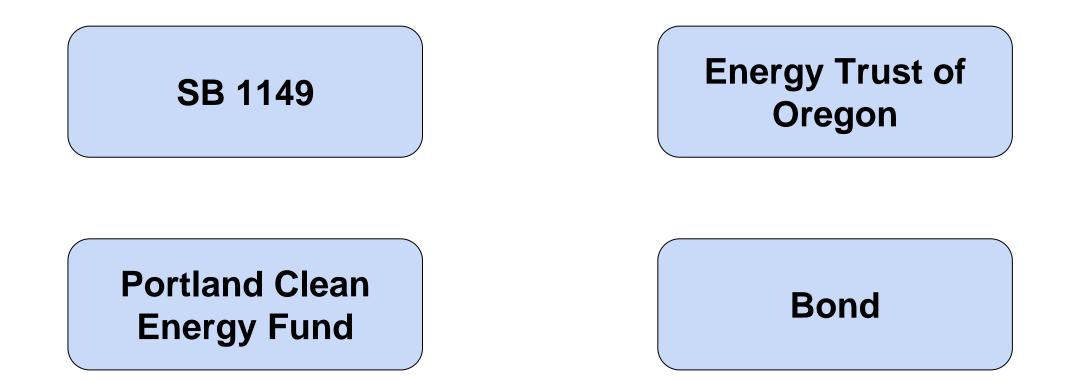

Decarb Roadmap

Decarb Roadmap

HS Cluster, Display Name				I	Facility Type, Primary Use							Ρ	Priority School	
All			\sim		All					\sim		A	All	~
Display Name	ECM	2024	2025	2026	2027	2028	2030	2032	2034	2036	2038	2040		
Abernethy	Air Sealing												_	
	Controls upgrade/RCx													
	Cooking Electrification													
	Cooling Addition													
	Filtration Upgrade													
	Heat Recovery Ventilation													
	Heating Electrification - Air-Source													
	Lighting Upgrade													
	Roof Upgrade													
	Wall Upgrade													
	Water Heating Electrification - ER													
	Window Upgrade													


Building Electrification: The Key to Decarb?

State goals for 100% renewable grid


What about electrical capacity? What about Culinary Arts and Bunsen burners?

Building Electrification: Kellogg Middle School

Stacked Funding

Where We Go From Here

Key Takeaways

- Building electrification can enhance educational environments and mitigate climate impacts.
- Electrifying schools is not a one-size fits-all endeavor. It requires careful consideration of local contexts, available resources, and long-term goals.
- Planning for lifecycle events and incorporating electrification strategies into routine capital improvements can help minimize cost.
- Make the most of available funding by tapping into and stacking opportunities such as federal grants, tax credits, and low-interest loans, local funds, etc.

- There is a **pressing need for action** and attention on our school infrastructure
- Despite the relatively large financial investments from the federal government in schools, the available funding is only a small percentage of what is needed.
- **Districts lack capacity** and know how to plan for long-term electrification approach

So what can YOU do?

- Help districts develop long-term plans to take advantage of lifecycle events
- Support districts with staff training and identifying and applying for funding opportunities
- Encourage districts to formalize goals into documentation
- Share success stories!

Want to support schools, find assistance and resources related to decarbonization, planning, funding, and more?

Join the Efficient Healthy Schools Program! https://efficienthealthyschools.lbl.gov/form/join

Questions?